3.294 \(\int (c+d x) \sec ^2(a+b x) \tan (a+b x) \, dx\)

Optimal. Leaf size=35 \[ \frac{(c+d x) \sec ^2(a+b x)}{2 b}-\frac{d \tan (a+b x)}{2 b^2} \]

[Out]

((c + d*x)*Sec[a + b*x]^2)/(2*b) - (d*Tan[a + b*x])/(2*b^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0316128, antiderivative size = 35, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {4409, 3767, 8} \[ \frac{(c+d x) \sec ^2(a+b x)}{2 b}-\frac{d \tan (a+b x)}{2 b^2} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)*Sec[a + b*x]^2*Tan[a + b*x],x]

[Out]

((c + d*x)*Sec[a + b*x]^2)/(2*b) - (d*Tan[a + b*x])/(2*b^2)

Rule 4409

Int[((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]^(n_.)*Tan[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Simp[
((c + d*x)^m*Sec[a + b*x]^n)/(b*n), x] - Dist[(d*m)/(b*n), Int[(c + d*x)^(m - 1)*Sec[a + b*x]^n, x], x] /; Fre
eQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int (c+d x) \sec ^2(a+b x) \tan (a+b x) \, dx &=\frac{(c+d x) \sec ^2(a+b x)}{2 b}-\frac{d \int \sec ^2(a+b x) \, dx}{2 b}\\ &=\frac{(c+d x) \sec ^2(a+b x)}{2 b}+\frac{d \operatorname{Subst}(\int 1 \, dx,x,-\tan (a+b x))}{2 b^2}\\ &=\frac{(c+d x) \sec ^2(a+b x)}{2 b}-\frac{d \tan (a+b x)}{2 b^2}\\ \end{align*}

Mathematica [A]  time = 0.0621442, size = 48, normalized size = 1.37 \[ -\frac{d \tan (a+b x)}{2 b^2}+\frac{c \sec ^2(a+b x)}{2 b}+\frac{d x \sec ^2(a+b x)}{2 b} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)*Sec[a + b*x]^2*Tan[a + b*x],x]

[Out]

(c*Sec[a + b*x]^2)/(2*b) + (d*x*Sec[a + b*x]^2)/(2*b) - (d*Tan[a + b*x])/(2*b^2)

________________________________________________________________________________________

Maple [A]  time = 0.027, size = 61, normalized size = 1.7 \begin{align*}{\frac{1}{b} \left ({\frac{d}{b} \left ({\frac{bx+a}{2\, \left ( \cos \left ( bx+a \right ) \right ) ^{2}}}-{\frac{\tan \left ( bx+a \right ) }{2}} \right ) }-{\frac{ad}{2\,b \left ( \cos \left ( bx+a \right ) \right ) ^{2}}}+{\frac{c}{2\, \left ( \cos \left ( bx+a \right ) \right ) ^{2}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)*sec(b*x+a)^2*tan(b*x+a),x)

[Out]

1/b*(d/b*(1/2*(b*x+a)/cos(b*x+a)^2-1/2*tan(b*x+a))-1/2/b*d*a/cos(b*x+a)^2+1/2*c/cos(b*x+a)^2)

________________________________________________________________________________________

Maxima [B]  time = 0.976842, size = 382, normalized size = 10.91 \begin{align*} \frac{c \tan \left (b x + a\right )^{2} - \frac{a d \tan \left (b x + a\right )^{2}}{b} + \frac{2 \,{\left (4 \,{\left (b x + a\right )} \cos \left (2 \, b x + 2 \, a\right )^{2} + 4 \,{\left (b x + a\right )} \sin \left (2 \, b x + 2 \, a\right )^{2} +{\left (2 \,{\left (b x + a\right )} \cos \left (2 \, b x + 2 \, a\right ) + \sin \left (2 \, b x + 2 \, a\right )\right )} \cos \left (4 \, b x + 4 \, a\right ) + 2 \,{\left (b x + a\right )} \cos \left (2 \, b x + 2 \, a\right ) +{\left (2 \,{\left (b x + a\right )} \sin \left (2 \, b x + 2 \, a\right ) - \cos \left (2 \, b x + 2 \, a\right ) - 1\right )} \sin \left (4 \, b x + 4 \, a\right ) - \sin \left (2 \, b x + 2 \, a\right )\right )} d}{{\left (2 \,{\left (2 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right )} \cos \left (4 \, b x + 4 \, a\right ) + \cos \left (4 \, b x + 4 \, a\right )^{2} + 4 \, \cos \left (2 \, b x + 2 \, a\right )^{2} + \sin \left (4 \, b x + 4 \, a\right )^{2} + 4 \, \sin \left (4 \, b x + 4 \, a\right ) \sin \left (2 \, b x + 2 \, a\right ) + 4 \, \sin \left (2 \, b x + 2 \, a\right )^{2} + 4 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right )} b}}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*sec(b*x+a)^2*tan(b*x+a),x, algorithm="maxima")

[Out]

1/2*(c*tan(b*x + a)^2 - a*d*tan(b*x + a)^2/b + 2*(4*(b*x + a)*cos(2*b*x + 2*a)^2 + 4*(b*x + a)*sin(2*b*x + 2*a
)^2 + (2*(b*x + a)*cos(2*b*x + 2*a) + sin(2*b*x + 2*a))*cos(4*b*x + 4*a) + 2*(b*x + a)*cos(2*b*x + 2*a) + (2*(
b*x + a)*sin(2*b*x + 2*a) - cos(2*b*x + 2*a) - 1)*sin(4*b*x + 4*a) - sin(2*b*x + 2*a))*d/((2*(2*cos(2*b*x + 2*
a) + 1)*cos(4*b*x + 4*a) + cos(4*b*x + 4*a)^2 + 4*cos(2*b*x + 2*a)^2 + sin(4*b*x + 4*a)^2 + 4*sin(4*b*x + 4*a)
*sin(2*b*x + 2*a) + 4*sin(2*b*x + 2*a)^2 + 4*cos(2*b*x + 2*a) + 1)*b))/b

________________________________________________________________________________________

Fricas [A]  time = 0.464679, size = 95, normalized size = 2.71 \begin{align*} \frac{b d x - d \cos \left (b x + a\right ) \sin \left (b x + a\right ) + b c}{2 \, b^{2} \cos \left (b x + a\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*sec(b*x+a)^2*tan(b*x+a),x, algorithm="fricas")

[Out]

1/2*(b*d*x - d*cos(b*x + a)*sin(b*x + a) + b*c)/(b^2*cos(b*x + a)^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (c + d x\right ) \tan{\left (a + b x \right )} \sec ^{2}{\left (a + b x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*sec(b*x+a)**2*tan(b*x+a),x)

[Out]

Integral((c + d*x)*tan(a + b*x)*sec(a + b*x)**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.23716, size = 771, normalized size = 22.03 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*sec(b*x+a)^2*tan(b*x+a),x, algorithm="giac")

[Out]

1/2*(b*d*x*tan(1/2*b*x)^4*tan(1/2*a)^4 + b*c*tan(1/2*b*x)^4*tan(1/2*a)^4 + 2*b*d*x*tan(1/2*b*x)^4*tan(1/2*a)^2
 + 2*b*d*x*tan(1/2*b*x)^2*tan(1/2*a)^4 + 2*b*c*tan(1/2*b*x)^4*tan(1/2*a)^2 + 2*d*tan(1/2*b*x)^4*tan(1/2*a)^3 +
 2*b*c*tan(1/2*b*x)^2*tan(1/2*a)^4 + 2*d*tan(1/2*b*x)^3*tan(1/2*a)^4 + b*d*x*tan(1/2*b*x)^4 + 4*b*d*x*tan(1/2*
b*x)^2*tan(1/2*a)^2 + b*d*x*tan(1/2*a)^4 + b*c*tan(1/2*b*x)^4 - 2*d*tan(1/2*b*x)^4*tan(1/2*a) + 4*b*c*tan(1/2*
b*x)^2*tan(1/2*a)^2 - 12*d*tan(1/2*b*x)^3*tan(1/2*a)^2 - 12*d*tan(1/2*b*x)^2*tan(1/2*a)^3 + b*c*tan(1/2*a)^4 -
 2*d*tan(1/2*b*x)*tan(1/2*a)^4 + 2*b*d*x*tan(1/2*b*x)^2 + 2*b*d*x*tan(1/2*a)^2 + 2*b*c*tan(1/2*b*x)^2 + 2*d*ta
n(1/2*b*x)^3 + 12*d*tan(1/2*b*x)^2*tan(1/2*a) + 2*b*c*tan(1/2*a)^2 + 12*d*tan(1/2*b*x)*tan(1/2*a)^2 + 2*d*tan(
1/2*a)^3 + b*d*x + b*c - 2*d*tan(1/2*b*x) - 2*d*tan(1/2*a))/(b^2*tan(1/2*b*x)^4*tan(1/2*a)^4 - 2*b^2*tan(1/2*b
*x)^4*tan(1/2*a)^2 - 8*b^2*tan(1/2*b*x)^3*tan(1/2*a)^3 - 2*b^2*tan(1/2*b*x)^2*tan(1/2*a)^4 + b^2*tan(1/2*b*x)^
4 + 8*b^2*tan(1/2*b*x)^3*tan(1/2*a) + 20*b^2*tan(1/2*b*x)^2*tan(1/2*a)^2 + 8*b^2*tan(1/2*b*x)*tan(1/2*a)^3 + b
^2*tan(1/2*a)^4 - 2*b^2*tan(1/2*b*x)^2 - 8*b^2*tan(1/2*b*x)*tan(1/2*a) - 2*b^2*tan(1/2*a)^2 + b^2)